Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
ACS Sens ; 8(4): 1422-1430, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2303906

ABSTRACT

Here, quercetin-mediated silver nanoparticle (AgNP) formation combined with loop-mediated isothermal amplification (LAMP) was introduced to colorimetrically detect two major infectious pathogens, SARS-CoV-2 and Enterococcus faecium, using a foldable PMMA microdevice. The nitrogenous bases of LAMP amplicons can readily form a complex with Ag+ ions, and the catechol moiety in quercetin, which acted as a reducing agent, could be chelated with Ag+ ions, resulting in the easy electron transfer from the oxidant to the reductant and producing brown-colored AgNPs within 5 min. The introduced method exhibited higher sensitivity than agarose gel electrophoresis due to more active redox centers in quercetin. The detection limit was attained at 101 copies µL-1 and 101 CFU mL-1 for SARS-CoV-2 RNA and E. faecium, respectively. A foldable microdevice made of two pieces of PMMA that fully integrates DNA extraction, amplification, and detection processes was fabricated to establish practical applicability. On one PMMA, DNA extraction was performed in a reaction chamber inserted with an FTA card, and then LAMP reagents were added for amplification. Silver nitrate was added to the reaction chamber after LAMP. On the other PMMA, quercetin-soaked paper discs loaded in the detection chamber were folded toward the reaction chamber for colorimetric detection. An intense brown color was produced within 5 min when heated at 65 °C. The introduced colorimetric assay, which is highly favorable for laboratory and on-site applications, could be a valuable alternative to conventional methods for detecting infectious diseases, given its unique principle, simplicity, and naked-eye detection.


Subject(s)
COVID-19 , Communicable Diseases , Metal Nanoparticles , Humans , Colorimetry/methods , Quercetin , Polymethyl Methacrylate , RNA, Viral , SARS-CoV-2 , Silver , DNA
2.
J Med Virol ; 95(3): e28622, 2023 03.
Article in English | MEDLINE | ID: covidwho-2286164

ABSTRACT

Parainfluenza virus 5 (PIV5) is a negative-sense, single-stranded RNA virus that can infect humans and many species of animals. Infection in these reservoir hosts is generally asymptomatic and has few safety concerns. Emerging evidence has shown that PIV5 is a promising vector for developing vaccines against human infectious diseases caused by coronaviruses, influenza, respiratory syncytial virus, rabies, HIV, or bacteria. In this review, we summarize recent progress and highlight the advantages and strategies of PIV5 as a vaccine vector to improve future vaccine design and application for clinical trials.


Subject(s)
Influenza Vaccines , Influenza, Human , Parainfluenza Virus 5 , Rabies Vaccines , Respiratory Syncytial Virus, Human , Animals , Humans , Parainfluenza Virus 5/genetics , Respiratory Syncytial Virus, Human/genetics , Parainfluenza Virus 3, Human
3.
Biosensors (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: covidwho-2246528

ABSTRACT

Infectious pathogens cause severe threats to public health due to their frightening infectivity and lethal capacity. Rapid and accurate detection of pathogens is of great significance for preventing their infection. Gold nanoparticles have drawn considerable attention in colorimetric biosensing during the past decades due to their unique physicochemical properties. Colorimetric diagnosis platforms based on functionalized AuNPs are emerging as a promising pathogen-analysis technique with the merits of high sensitivity, low-cost, and easy operation. This review summarizes the recent development in this field. We first introduce the significance of detecting pathogens and the characteristics of gold nanoparticles. Four types of colorimetric strategies, including the application of indirect target-mediated aggregation, chromogenic substrate-mediated catalytic activity, point-of-care testing (POCT) devices, and machine learning-assisted colorimetric sensor arrays, are systematically introduced. In particular, three biomolecule-functionalized AuNP-based colorimetric sensors are described in detail. Finally, we conclude by presenting our subjective views on the present challenges and some appropriate suggestions for future research directions of colorimetric sensors.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Colorimetry/methods , Biosensing Techniques/methods
4.
Mikrochim Acta ; 189(12): 443, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2103917

ABSTRACT

The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Communicable Diseases , Humans , COVID-19/diagnosis , Point-of-Care Testing , Communicable Diseases/diagnosis
5.
Curr Med Sci ; 42(5): 1094-1098, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2048502

ABSTRACT

OBJECTIVE: To investigate the epidemiological features in children after the coronavirus disease 2019 (COVID-19) pandemic. METHODS: This study collected throat swabs and serum samples from hospitalized pediatric patients of Renmin Hospital of Wuhan University, Wuhan, Hubei province, China before and after the COVID-19 pandemic. Respiratory infected pathogens [adenovirus (ADV), influenza virus A/B (Flu A/B), parainfluenza virus 1/2/3 (PIV1/2/3), respiratory syncytial virus (RSV), Mycoplasma pneumoniae (MP), and Chlamydia pneumoniae (CP)] were detected. The pathogens, age, and gender were used to analyze the epidemiological features in children after the COVID-19 pandemic. RESULTS: The pathogen detection rate was significantly higher in females than in males (P<0.05), and the infection of PIV1 and MP was mainly manifested. After the COVID-19 pandemic, PIV1, PIV3, RSV, and MP had statistically different detection rates among the age groups (P<0.05), and was mainly detected in patients aged 0-6 years, 0-3 years, 0-3 years, and 1-6 years, respectively. When comparing before the COVID-19 pandemic, the total detection rate of common respiratory pathogens was lower (P<0.05). Except for the increase in the detection rate of PIV1 and CP, the infection rate of other pathogens had almost decreased. CONCLUSION: The prevention and control measures for the COVID-19 pandemic effectively changed the epidemiological features of common respiratory tract infectious diseases in pediatric children.


Subject(s)
COVID-19 , Respiratory Tract Infections , Male , Female , Child , Humans , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/diagnosis , Mycoplasma pneumoniae , Respiratory Syncytial Viruses
6.
Micromachines (Basel) ; 12(9)2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1436071

ABSTRACT

The rapid detection and quantification of infectious pathogens is an essential component to the control of potentially lethal outbreaks among human populations worldwide. Several of these highly infectious pathogens, such as Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been cemented in human history as causing epidemics or pandemics due to their lethality and contagiousness. SARS-CoV-2 is an example of these highly infectious pathogens that have recently become one of the leading causes of globally reported deaths, creating one of the worst economic downturns and health crises in the last century. As a result, the necessity for highly accurate and increasingly rapid on-site diagnostic platforms for highly infectious pathogens, such as SARS-CoV-2, has grown dramatically over the last two years. Current conventional non-microfluidic diagnostic techniques have limitations in their effectiveness as on-site devices due to their large turnaround times, operational costs and the need for laboratory equipment. In this review, we first present criteria, both novel and previously determined, as a foundation for the development of effective and viable on-site microfluidic diagnostic platforms for several notable pathogens, including SARS-CoV-2. This list of criteria includes standards that were set out by the WHO, as well as our own "seven pillars" for effective microfluidic integration. We then evaluate the use of microfluidic integration to improve upon currently, and previously, existing platforms for the detection of infectious pathogens. Finally, we discuss a stage-wise means to translate our findings into a fundamental framework towards the development of more effective on-site SARS-CoV-2 microfluidic-integrated platforms that may facilitate future pandemic diagnostic and research endeavors. Through microfluidic integration, many limitations in currently existing infectious pathogen diagnostic platforms can be eliminated or improved upon.

SELECTION OF CITATIONS
SEARCH DETAIL